Issue Paper on Transportation and Circulation

City of Calabasas 2030 General Plan Update

Prepared by:

Associated Transportation Engineers
100 North Hope Avenue, Suite 4
Santa Barbara, CA 93110

and

Rincon Consultants, Inc.
790 E. Santa Clara Street
Ventura, California 93001

July 2007
Table of Contents

Introduction ... 1
Existing Circulation System... 1
Existing Traffic Conditions... 3
Circulation Improvements ... 7
School Traffic .. 9
Traffic Calming .. 9
Transit ... 12
Bikeway System .. 13
Summary ... 14

Tables

1: Signalized Intersection Level of Service Definitions... 4
2: Unsignalized Intersection Level of Service Definitions.. 4
3a: Existing Intersection Levels of Service - Western City.. 5
3b: Existing Intersection Levels of Service - Eastern City .. 6
INTRODUCTION

Associated Transportation Engineers (ATE) has prepared the following transportation and circulation issue paper for the Circulation Element of the Calabasas 2030 General Plan Update. The study includes an analysis of existing intersection and roadway operations, existing traffic patterns within the City and regional area, alternative modes of transportation, and options to improve the circulation system.

EXISTING CIRCULATION SYSTEM

Regional System

U.S. Highway 101 travels east-west through the City of Calabasas, connecting Calabasas with Los Angeles to the southeast and with the cities of Thousand Oaks, Camarillo, Oxnard, and Ventura to the northwest. Access to U.S. 101 is provided at Lost Hills Road, Las Virgenes Road, Calabasas Road, Ventura Boulevard, Parkway Calabasas, and Valley Circle Boulevard.

During periods of heavy congestion on U.S. 101, regional traffic is diverted from the highway to the City street network. Arterials that travel parallel to U.S. 101, including Calabasas Road, Mureau Road, and Agoura Road, carry diverted highway traffic through the City.

Las Virgenes Road and Lost Hills Road provide access from U.S. 101 through the City to the City of Malibu to the south. Lost Hills Road joins Las Virgenes Road approximately one mile south of U.S. 101, and Las Virgenes becomes Malibu Canyon Road further south in unincorporated Los Angeles County and connects to Pacific Coast Highway (Highway 1).

Mulholland Highway travels from its eastern terminus at Mulholland Drive southwest through the City of Calabasas and unincorporated Los Angeles County before connecting to Pacific Coast Highway near the Ventura County line.

Mureau Road travels parallel to U.S. 101 on the north side of the highway. It connects to Las Virgenes Road at the western terminus and crosses over the highway before connecting with Calabasas Road approximately two miles to the east. During hours of heavy traffic on U.S. 101, Mureau Road becomes an alternate route for regional traffic through the City, carrying overflow traffic from the highway.

Calabasas Road travels parallel to U.S. 101 for several miles from west of Mureau Road to the City of Woodland Hills on the east, where it becomes Avenue San Luis. Like
Mureau Road, Calabasas Road is an alternate route for regional traffic traveling through Calabasas during periods of heavy congestion on U.S. 101.

Agoura Road is an arterial connecting the City of Calabasas with the City of Agoura Hills to the west. Agoura Road runs parallel to U.S. 101 and terminates at Las Virgenes Road to the east.

The City’s policy is to reduce the amount of regional traffic on neighborhood streets. However, the City does not have jurisdiction over many of the surrounding facilities that carry regional traffic through the City. One way the City of Calabasas can reduce the influence of regional traffic on the community is by limiting development of roadway connections that will carry traffic through Calabasas to Los Angeles, Malibu, and the cities of Ventura County.

City System

The City of Calabasas is divided east-west in two distinct halves. The only connections between the two sides of the City are U.S. 101, Mulholland Highway, and Mureau Road, which runs parallel on the north side of the highway. The City of Calabasas circulation system is classified into three categories: Arterial, Collector, and Local roadways. It is noted that some of the primary arterial roadways in the City of Calabasas serve residential areas, which is not typical of arterial roadways.

The following are the primary arterials that serve the City.

- Calabasas Road
- Parkway Calabasas
- Las Virgenes Road
- Lost Hills Road
- Mureau Road
- Agoura Road
- Old Topanga Canyon Road
- Mulholland Highway

The following are the primary collectors that serve the City.

- Park Sorrento
- Park Granada
- Park Capri
- Park Helena
- Thousand Oaks Boulevard
- Park Ora
The majority of remaining roads in the City are classified as local roadways.

EXISTING TRAFFIC CONDITIONS

When examining traffic patterns in a city roadway system, intersections are the key components of the system where congestion occurs. Intersection operations are generally quantified by collecting traffic counts during peak morning and afternoon commute periods.

Intersection Operations

Levels of service (LOS) A through F are used to rate intersection operations, with LOS A indicating very good operations with little congestion and LOS F indicating poor operations with heavy congestion. The current General Plan performance standard for intersections is LOS C. Table 1 summarizes the level of service definitions for signalized intersections, as presented in the Highway Capacity Manual (HCM).¹

The operations for the key intersections in the City were evaluated based on existing geometries, traffic control and A.M. and P.M. peak hour traffic volumes. The peak hour traffic counts were collected at the study-area intersections in 2006 and 2007. Levels of service for the signalized study-area intersections were calculated using the Intersection Capacity Utilization (ICU) methodology, as required by City policy.

Levels of service for unsignalized intersections were calculated using the Highway Capacity Manual methodology. The HCM uses control delay to determine the level of service at unsignalized intersections. Control delay is the difference between the travel time actually experienced at the control device and the travel time that would occur in the absence of the traffic control device. Control delay includes deceleration from free flow speed, queue move-up time, stopped delay and acceleration back to free flow speed. Table 2 presents the level of service definitions for unsignalized intersections.

Table 1: Signalized Intersection Level of Service Definitions

<table>
<thead>
<tr>
<th>LOS</th>
<th>V/C Ratio</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 0.60</td>
<td>Progression is extremely favorable. Most vehicles arrive during the green phase. Many vehicles do not stop at all.</td>
</tr>
<tr>
<td>B</td>
<td>0.61 - 0.70</td>
<td>Good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.</td>
</tr>
<tr>
<td>C</td>
<td>0.71 - 0.80</td>
<td>Only fair progression, longer cycle lengths, or both, result in higher cycle lengths. Cycle lengths may fail to serve queued vehicles, and overflow occurs. Number of vehicles stopped is significant, though many still pass through intersection without stopping.</td>
</tr>
<tr>
<td>D</td>
<td>0.81 - 0.90</td>
<td>Congestion becomes more noticeable. Unfavorable progression, long cycle lengths and high v/c ratios result in longer delays. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.</td>
</tr>
<tr>
<td>E</td>
<td>0.91 - 1.00</td>
<td>High delay values indicate poor progression, long cycle lengths and high v/c ratios. Individual cycle failures are frequent</td>
</tr>
<tr>
<td>F</td>
<td>> 1.00</td>
<td>Considered unacceptable for most drivers, this level occurs when arrival flow rates exceed the capacity of lane groups, resulting in many individual cycle failures. Poor progression and long cycle lengths may also contribute to high delay levels.</td>
</tr>
</tbody>
</table>

Table 2: Unsignalized Intersection Level of Service Definitions

<table>
<thead>
<tr>
<th>LOS</th>
<th>Control Delay Seconds per Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 10.0</td>
</tr>
<tr>
<td>B</td>
<td>10.1 - 15.0</td>
</tr>
<tr>
<td>C</td>
<td>15.1 - 25.0</td>
</tr>
<tr>
<td>D</td>
<td>25.1 - 35.0</td>
</tr>
<tr>
<td>E</td>
<td>35.1 - 50.0</td>
</tr>
<tr>
<td>F</td>
<td>> 50.0</td>
</tr>
</tbody>
</table>
Tables 3a and 3b list the existing A.M. and P.M. peak hour levels of service and traffic controls for major intersections in the City. Levels of service calculation worksheets are attached for reference.

The data presented in Tables 3a and 3b indicate that most of the study-area intersections currently operate at LOS C or better during the A.M. and P.M. peak hour periods, which is acceptable based on the City’s LOS C standard. The following intersections currently operate at levels of service that do not meet the City’s LOS C standard:

- Lost Hills Rd./U.S. 101 NB ramps (P.M.)
- Lost Hills Rd./Malibu Hills Rd. (P.M.)
- The Lost Hills Rd./Las Virgenes Rd. (A.M.)
- Las Virgenes Rd./U.S. 101 SB ramps (P.M.)
- Valley Circle Blvd./U.S. 101 NB ramps (A.M.)
- Mulholland Hwy./Freedom Dr. (A.M.)
- Mulholland Hwy./Old Topanga Canyon Dr. (E) (A.M. and P.M.)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>V/C or Delay/LOS</th>
<th>A.M. Peak Hour</th>
<th>P.M. Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost Hills Rd./U.S. 101 NB ramps</td>
<td>Signal</td>
<td>0.72/LOS C</td>
<td>0.86/LOS D</td>
<td></td>
</tr>
<tr>
<td>Lost Hills Rd./U.S. 101 SB ramps</td>
<td>Signal</td>
<td>0.71/LOS C</td>
<td>0.54/LOS A</td>
<td></td>
</tr>
<tr>
<td>Lost Hills Rd./Agoura Rd.</td>
<td>Signal</td>
<td>0.54/LOS A</td>
<td>0.74/LOS C</td>
<td></td>
</tr>
<tr>
<td>Lost Hills Rd./Cold Springs St.</td>
<td>Stop</td>
<td>12.9 sec/LOS B</td>
<td>12.3 sec/LOS B</td>
<td></td>
</tr>
<tr>
<td>Lost Hills Rd./Malibu Hills Rd.</td>
<td>Stop</td>
<td>18.2 sec/LOS C</td>
<td>34.4 sec/LOS D</td>
<td></td>
</tr>
<tr>
<td>Lost Hills Rd./Meadow Creek Ln.</td>
<td>Stop</td>
<td>13.5 sec/LOS B</td>
<td>12.1 sec/LOS B</td>
<td></td>
</tr>
<tr>
<td>Lost Hills Rd./Las Virgenes Rd.</td>
<td>Signal</td>
<td>1.18/LOS F</td>
<td>0.77/LOS C</td>
<td></td>
</tr>
<tr>
<td>Las Virgenes Rd./Agoura Rd.</td>
<td>Signal</td>
<td>0.68/LOS B</td>
<td>0.72/LOS C</td>
<td></td>
</tr>
<tr>
<td>Las Virgenes Rd./U.S. 101 NB ramps</td>
<td>Signal</td>
<td>0.71/LOS C</td>
<td>0.59/LOS A</td>
<td></td>
</tr>
<tr>
<td>Las Virgenes Rd./U.S. 101 SB ramps</td>
<td>Signal</td>
<td>0.77/LOS C</td>
<td>0.96/LOS E</td>
<td></td>
</tr>
<tr>
<td>Las Virgenes Rd./Mureau Rd.</td>
<td>Stop</td>
<td>0.50/LOS A</td>
<td>0.58/LOS A</td>
<td></td>
</tr>
<tr>
<td>Las Virgenes Rd./Thousand Oaks Blvd.</td>
<td>Stop</td>
<td>22.4 sec/LOS C</td>
<td>12.1 sec/LOS B</td>
<td></td>
</tr>
<tr>
<td>Ventura Blvd./U.S. 101 NB ramps</td>
<td>Signal</td>
<td>0.46/LOS A</td>
<td>0.51/LOS A</td>
<td></td>
</tr>
</tbody>
</table>
Table 3b: Existing Intersection Levels of Service - Eastern City

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>V/C or Delay/LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A.M. Peak Hour</td>
</tr>
<tr>
<td>Parkway Calabasas/Ventura Blvd.</td>
<td>Signal</td>
<td>0.47/LOS A</td>
</tr>
<tr>
<td>Calabasas Rd./Parkway Calabasas</td>
<td>Signal</td>
<td>0.50/LOS A</td>
</tr>
<tr>
<td>Parkway Calabasas/Park Granada</td>
<td>Signal</td>
<td>0.52/LOS A</td>
</tr>
<tr>
<td>Calabasas Rd./Mureau Rd.</td>
<td>Stop</td>
<td>10.0 sec/LOS A</td>
</tr>
<tr>
<td>Calabasas Rd./U.S. 101 SB ramps (W)</td>
<td>Signal</td>
<td>0.74/LOS C</td>
</tr>
<tr>
<td>Calabasas Rd./Park Center</td>
<td>Signal</td>
<td>0.24/LOS A</td>
</tr>
<tr>
<td>Calabasas Rd./Commons Way</td>
<td>Signal</td>
<td>0.30/LOS A</td>
</tr>
<tr>
<td>Calabasas Rd./Park Granada</td>
<td>Signal</td>
<td>0.37/LOS A</td>
</tr>
<tr>
<td>Calabasas Rd./U.S. 101 SB ramps (E)</td>
<td>Signal</td>
<td>0.50/LOS A</td>
</tr>
<tr>
<td>Calabasas Rd./Valley Circle Blvd.</td>
<td>Signal</td>
<td>0.58/LOS A</td>
</tr>
<tr>
<td>Valley Circle Blvd./U.S. 101 NB ramps (a)</td>
<td>Signal</td>
<td>0.96/LOS E</td>
</tr>
<tr>
<td>Park Granada/Park Capri</td>
<td>Stop</td>
<td>18.2 sec/LOS C</td>
</tr>
<tr>
<td>Park Granada/Park Sorrento</td>
<td>Signal</td>
<td>0.36/LOS A</td>
</tr>
<tr>
<td>Park Sorrento/Park Ora</td>
<td>Stop</td>
<td>9.2 sec/LOS A</td>
</tr>
<tr>
<td>Valmar Rd./Park Ora</td>
<td>Signal</td>
<td>0.47/LOS A</td>
</tr>
<tr>
<td>Mulholland Hwy./Freedom Dr.</td>
<td>Stop</td>
<td>88.4 sec/LOS F</td>
</tr>
<tr>
<td>Mulholland Hwy./Paul Revere Dr.</td>
<td>Signal</td>
<td>0.70/LOS B</td>
</tr>
<tr>
<td>Mulholland Hwy./Old Topanga Canyon Dr. (E)</td>
<td>Stop</td>
<td>247.7 sec/LOS F</td>
</tr>
<tr>
<td>Mulholland Hwy./Old Topanga Canyon Dr. (W)</td>
<td>Stop</td>
<td>15.1 sec/LOS C</td>
</tr>
</tbody>
</table>

(a) Intersection is located within the City of Los Angeles jurisdiction yet is affected by vehicles traveling to/from Calabasas.
CIRCULATION IMPROVEMENTS

Lost Hills Road/Las Virgenes Road B&T Program

The City of Calabasas has adopted the Lost Hills Road/Las Virgenes Road Bridge and Thoroughfare Construction Fee District Program (B&T Program). The following improvements have been programmed as part of the B&T Program:

Lost Hills Road/U.S. 101 NB ramps: The B&T Program includes two options for improvements to this intersection:

- Option 1 - Diamond Interchange This option would widen the Lost Hills Road bridge to five travel lanes with dual left-turn lanes and one through lane at the northbound approach and one left-turn lane and one shared left-through-right lane at the westbound approach.

- Option 2 - Partial Cloverleaf Interchange This option is similar to the option above, except that a cloverleaf ramp would be used by northbound vehicles destined for the 101 NB On-Ramp.

Schematic plans showing the two options are attached.

The City has completed the Project Study Report (PSR) for the Lost Hills Road/U.S. 101 NB ramps improvements and is currently working on the Engineering Plans (PAE&D) for the two options. The City currently has $4 million for the project and is expecting to collect approximately $2 million more through B&T district fees. The City is planning to seek matching State and Federal funds for the remainder of the improvement costs.

Las Virgenes Road/U.S. 101 SB ramps: The B & T Program includes restriping the northbound approach of Las Virgenes Road at Rondell Street to provide two through lanes and one shared through-right lane. North of the intersection, Las Virgenes Road is to be re-striped to provide a single through lane, a shared through-right lane, and a single right-turn lane for vehicles entering the southbound U.S. 101 freeway. The U.S. 101 southbound on-ramps are to be restriped as well to provide two travel lanes. The westbound approach of Rondell Street would be restriped to provide a shared left-through lane and one right-turn lane. The traffic signal at the intersection would be split phased to minimize conflict of westbound through traffic with vehicles exiting the freeway.

West Calabasas Road Master Plan

The following improvement recommendations are included in the West Calabasas Road...
Master Plan:

Calabasas Road/Mureau Road: This intersection is currently controlled by stop signs on the westbound left-turn and eastbound movements. The proposed intersection modification is to construct a roundabout. This would likely be an *Urban Single Lane* or an *Urban Double Lane* roundabout that would contain either one or two circular travel lanes.

Calabasas Road Western Terminus: The Master Plan proposes to construct a circular turnaround that contains a central island at the western terminus of Calabasas Road.

Calabasas Road east of Mureau Road: The City is developing striping plans for Calabasas Road along the Acura and BMW Dealerships to provide a continuous two-way left turn lane where geometrically possible. The turn lane will provide storage for left-turning vehicles and improve safety conditions, and expedite the movement of through traffic. The left-turn lane could serve as a loading/unloading area for trucks. Sufficient pavement width exists along the dealerships to facilitate the turn lane. This improvement is programmed to be implemented in the near future.

Calabasas Road/U.S. 101 SB ramps: Improvements to the Calabasas Road/U.S. 101 SB ramps intersection were conditioned as part of the Volvo dealership project approved on West Calabasas Road. Planned improvements included the widening of the eastbound approach to provide one left-turn lane, one shared left-through lane, and one through lane. However, since the approval of the Volvo dealership, the City has received a proposal for a Lamborghini dealership adjacent to the intersection. The improvements conditioned for the intersection must now be reconsidered based on the new proposal.

Other Possible Improvements

Craftsman’s Corner is a commercial district within the unincorporated County located immediately north of the Ventura Freeway and east of Parkway Calabasas. There has been significant interest in annexing the area to the City and redeveloping to residential or mixed-use. Redeveloping the area would likely result in significant traffic increases, and the limited access currently available to the area may become an issue. The Craftsman’s Corner district is currently accessed from Ventura Boulevard, a frontage road that connects to Parkway Calabasas. The Parkway Calabasas intersections that would carry the additional traffic from the south side of the City are currently operating at LOS A during the A.M. and P.M. peak hours. With cumulative development, locations are expected to operate in the LOS C range, which is considered acceptable based on City standards.

Relocation of Mureau Road bridge connection to Calabasas Road: The City’s General Plan calls for the relocation of the present Mureau Road bridge over U.S. 101 with a new
four-lane bridge to the west of the present bridge, near the western terminus of Calabasas Road. Mureau Road to the west of the bridge would be widened to four lanes, providing a four lane through route alternative to the freeway between Parkway Calabasas and Las Virgenes Road.

SCHOOL TRAFFIC

Congestion caused by school traffic during morning and afternoon peak hours is a concern from both operational and safety perspectives. Alternative transportation is a key method of reducing school traffic. The City shuttle routes are scheduled to provide service in the mornings and afternoons to all City of Calabasas schools. However, this is not the primary function of the shuttles. The shuttles provide the City with a means of public transportation. Polls conducted by the City indicate that 2% of students ride the shuttle to school and 16% ride the school bus to school. The City encourages the use of public shuttles and school busses, as well as carpooling, walking and bicycling to and from schools. The City also creates and updates educational materials promoting these alternative means of getting to school. These materials are consistent with the Safe Routes to School Program, which is a Federal-Aid program administered by the California Department of Transportation.

One particular location of concern is the Old Topanga Canyon/Mulholland Highway intersection, adjacent to Calabasas High School. The City is planning to install a traffic signal at the intersection because of the long delays of morning and afternoon peak hour traffic generated by the school. With the existing stop-control, the intersection is currently operating at LOS F in the A.M. and P.M. peak hours. With the proposed signal in place, the intersection would operate at LOS A in the A.M. and P.M. peak hours.

TRAFFIC CALMING

“Traffic Calming is the combination of mainly physical measures that reduce the negative effects of motor vehicle use, alter driver behavior and improve conditions for non-motorized street users.”\(^2\) The purpose of traffic calming measures is to reduce the speed and volume of traffic to a level appropriate for the conditions of the roadway, and to promote traffic safety and active street life. Thus, traffic calming is most often appropriate on residential streets or roadways with high levels of pedestrian or bicycle activity.

Traffic calming measures are generally intended to be self-enforcing, rather than regulatory, i.e. installing speed humps rather than posting reduced speed limits. There

are a wide variety of traffic calming measures that have been proven to be effective. Common measures for speed reduction include vertical measures (speed humps, textured pavement), horizontal measures (traffic circles, lateral shifts), and narrowings (center islands, curb extensions). Measures for volume reduction include full and partial street closures, diveters, and forced-turn barriers. The proper traffic calming measure can be selected by taking into account the nature of the problem, the roadway environment, the desired outcome, and the resources available.

The Calabasas City Council adopted the Neighborhood Traffic Calming Implementation Policy in May 2001. The Policy describes its objective as “to implement a neighborhood traffic calming policy to insure:

1. The safety of all persons using, or in close proximity to, residential roadways.

2. Neighborhood livability through mitigation of the impacts of vehicular traffic in residential neighborhoods.

3. Safe and pleasant conditions for all modes of transportation including personal vehicles, emergency vehicles, transit vehicles, bicycles, and pedestrian movement.”

The document outlines the steps for the initiation and process of a traffic calming study and outlines the criteria for feasibility of implementing traffic calming devices. The program is designed so that the impetus for and direction for improvement lies with the community, rather than City staff. The policy also provides a list of traffic calming devices approved by the City.

The policy divides the City into 12 Traffic Calming Regions, roughly based on residential neighborhoods. The following traffic calming measures have been implemented within the City, listed by region:

Region 1: Malibu Canyon above Thousand Oaks Boulevard
- Raised crosswalk at Lupin Hills Elementary School
- Speed humps on Parkmor Road, Adamor Road, Alizia Canyon Drive
- Center island configuration on Las Virgenes Road

Region 2: Malibu Canyon below Thousand Oaks Boulevard
- No Right Turn 7-9 A.M. on Las Virgenes at Parkmor Road
- Landscaped intersection median island on Parkmor Road
- Lane channel island on Parkmor Road
- Speed humps on Ruthwood Drive
Region 3: Saratoga Hills
- Traffic circle on Ambridge Drive
- Center medians on Helmond Drive

Region 4: Deersprings
- Speed humps on Lost Springs Drive
- Closure of Shadow Hills Road at Calabasas Hills Road
- Intersection median islands on Calabasas Hills Road

Region 5: Commercial Areas
- Landscaped island on Park Center
- Landscaped medians along Agoura Road

Region 6: Vista Point
- Pedestrian Crossing signage
- Private and gated residential community

Region 7: Calabasas Park
- Roundabout on Parkway Calabasas
- Remaining residential communities are private and gated

Region 8: Mountain Park
- Private and gated residential community

Region 9: Calabasas Village
- Center medians on Park Sienna at Park Alisal, Park Cordero and Park Sevilla
- Raised crosswalk on Park Sienna
- Speed humps on Park Sorrento

Region 10: Highlands
- Existing narrow streets of this older community function as traffic calming devices

Region 11: Mulwood Area above Mulholland Highway
- Two traffic circles on Paul Revere Drive
- Speed humps on Towhee Drive
Region 12: Mulwood Area below Mulholland Highway

- 2 traffic circles on Dardenne Street
- Speed humps on Eddingham Avenue and Dardenne Street

Downtown: Old Town Calabasas

- Lane reduction and landscaped center median on Calabasas Road
- Cobblestone crosswalks on Calabasas Road

Traffic calming studies can be initiated by citizen petition or a recommendation by the Traffic and Transportation Commission, the City Council, or the Traffic Division of the Public Works Department. Traffic calming requests are prioritized by traffic safety issues, traffic volumes, and speed conditions. Once a study has been initiated, Traffic Division staff prepare a report including data collection; evaluation of geometric, safety, and vehicle considerations; feasibility of implementation; priority ranking; and documentation of resident participation and support of the project.

Based on the findings of the report, Traffic Division staff makes a recommendation to the Traffic/Transportation Commission and submits the report for review, comment and action. If the project is a capital project that requires Council approval, the report must be submitted to the City Council after approval by the Traffic/Transportation Commission. Upon approval from the Traffic/Transportation Commission, and where applicable, City Council approval, Traffic Division staff will implement the traffic calming program.

TRANSIT

The City’s Transportation Department provides a free shuttle service with 4 lines operating throughout the City. The morning and afternoon hours are designed to provide service to students at all City of Calabasas public schools. In addition to the shuttles, the City also runs the Calabasas Trolley, a free service that runs an hour-long loop connecting the east and west sides of the City on Fridays, Saturdays, and Sundays.

The City is also served by Los Angeles County Metro Route 161, and Commuter Express Routes 422 and 423. These routes provide regional service between Calabasas and the San Fernando Valley and Los Angeles.

As noted previously, according to polls conducted by the City, 18% of students ride the bus or shuttle to school. The same polls showed that 16% of the community utilizes the City shuttles with 6% riding the shuttles at least once a week.
Calabasas has a well-developed transit system, given the size of the City and its car-dependent nature. There are no major deficiencies in the transit system. Taking measures to raise public awareness of the shuttle system could increase the level of ridership.

BIKEWAY SYSTEM

Bikeways are described by three classifications, depending on the degree of separation provided from motor vehicle traffic. Class I bicycle paths are on rights-of-way completely separated from roadways. The bikeway may be parallel and adjacent to roadways as long as there is no encroachment from motor vehicle or pedestrian traffic except at grade intersections. Class I bicycle paths provide the safest environment for bicycle travel, but require the most dedicated space.

Class II bicycle routes are striped one-way lanes set aside for bicycle travel on roadways. Safety issues can arise due to on-street parking and vehicles crossing Class II bicycle lanes to make right turns. The existing Calabasas bicycle network is made up of all Class II facilities.

Class III bikeways are marked by signs only. Bicycle and motor vehicle or pedestrian traffic share the same roadway. Class III bikeways provide the least separation between bicycle and motor vehicle traffic. They are generally provided on low-volume roadways or where there is not sufficient space for Class I or II bikeways.

Class II Bicycle facilities currently exist along segments of Agoura Road, Las Virgenes Road, Calabasas Road, Parkway Calabasas, Park Sorrento, Park Granada, Mulholland Highway, and Old Topanga Canyon Road. According to the Bicycle Master Plan, new or extended bike lanes are proposed or recommended along portions of Lost Hills Road, Las Virgenes Road, Malibu Hills Road, Calabasas Hills Road, Mureau Road, Park Sorrento, Park Sienna, Park Ora, Valmar Road, Old Topanga Canyon Road, and Mulholland Highway. The Master Plan’s recommended bicycle network is attached.

The City of Calabasas links the regional bicycle facility network between the San Fernando Valley and the City of Agoura Hills. The regional network currently consists of Calabasas Road east of Mureau Road, Las Virgenes Road between Mureau Road and Agoura Road, and Agoura Road to the western City limit. A Class II bicycle lane is scheduled to be constructed along Mureau Road to close the gap in the regional network that spans the City of Calabasas.

As the primary arterial serving the western portion of the City of Calabasas, Las Virgenes Road is a critical component of the bicycle facility network for both commuters
and recreational cyclists. The City’s Bicycle Master Plan identifies the length of Las Virgenes Road as a future Class II facility, with Class I bike paths where space permits.

The planned improvements to Mureau Road and Las Virgenes Road would close gaps in the regional bicycle network. Deficiencies in the bicycle network within the City would be addressed by the proposed and recommended improvements included in the Bicycle Master Plan. Many of the proposed Class II bicycle lanes have not yet been implemented. The Class II lanes will be added as frontage and roadway improvements are completed.

SUMMARY

The following issues will be addressed in the Transportation/Circulation Element of the 2030 General Plan:

- Regional traffic overflow from U.S. Highway 101
- Deficient intersections
- Planned and recommended improvements to the circulation system
- Congestion due to school traffic
- Planned and recommended improvements to the bikeway system
- Traffic calming